Filtro médio móvel de 5 pontos
Documentação Este exemplo mostra como usar filtros médios móveis e reescrever para isolar o efeito de componentes periódicos da hora do dia em leituras horárias horárias, bem como remover o ruído indesejado da linha de uma medida de tensão de circuito aberto. O exemplo também mostra como alisar os níveis de um sinal de relógio, preservando as bordas usando um filtro mediano. O exemplo também mostra como usar um filtro Hampel para remover grandes outliers. Motivation Smoothing é como descobrimos padrões importantes em nossos dados, deixando de lado as coisas que não têm importância (ou seja, o ruído). Usamos a filtragem para executar esse alisamento. O objetivo do suavização é produzir mudanças lentas de valor, de modo que seja mais fácil ver tendências em nossos dados. Às vezes, quando você examina dados de entrada, você deseja suavizar os dados para ver uma tendência no sinal. No nosso exemplo, temos um conjunto de leituras de temperatura em Celsius tomadas a cada hora no Aeroporto de Logan durante todo o mês de janeiro de 2017. Note que podemos visualizar visualmente o efeito que a hora do dia tem nas leituras de temperatura. Se você está interessado apenas na variação diária da temperatura ao longo do mês, as flutuações horárias só contribuem com o ruído, o que dificulta a discernição das variações diárias. Para remover o efeito da hora do dia, gostaríamos agora de suavizar nossos dados usando um filtro de média móvel. Um filtro de média móvel Na sua forma mais simples, um filtro médio móvel de comprimento N leva a média de cada N amostras consecutivas da forma de onda. Para aplicar um filtro de média móvel a cada ponto de dados, construímos nossos coeficientes de nosso filtro de modo que cada ponto seja igualmente ponderado e contribua com 124 para a média total. Isso nos dá a temperatura média em cada período de 24 horas. Retardamento do filtro Observe que a saída filtrada está atrasada em cerca de doze horas. Isto é devido ao fato de nosso filtro de média móvel ter um atraso. Qualquer filtro simétrico de comprimento N terá um atraso de (N-1) 2 amostras. Podemos explicar esse atraso manualmente. Extraindo diferenças médias Alternativamente, também podemos usar o filtro de média móvel para obter uma melhor estimativa de como a hora do dia afeta a temperatura geral. Para fazer isso, primeiro, subtrair os dados suavizados das medidas horárias de temperatura. Em seguida, segmente os dados diferenciados em dias e leve a média em todos os 31 dias do mês. Extraindo o envelope de pico Às vezes, também gostaríamos de ter uma estimativa variável suave de como os altos e baixos do nosso sinal de temperatura mudam diariamente. Para fazer isso, podemos usar a função de envelope para conectar altas e baixas extremas detectadas em um subconjunto do período de 24 horas. Neste exemplo, garantimos que haja pelo menos 16 horas entre cada extremo alto e extremo baixo. Nós também podemos ter uma noção de como os altos e baixos estão tendendo tomando a média entre os dois extremos. Filtros médios em movimento ponderados Outros tipos de filtros médios móveis não pesam cada amostra de forma igual. Outro filtro comum segue a expansão binomial de (12,12) n Este tipo de filtro se aproxima de uma curva normal para valores grandes de n. É útil para filtrar o ruído de alta freqüência para pequenos n. Para encontrar os coeficientes para o filtro binomial, convolve 12 12 com ele próprio e, então, convoluciona a saída com 12 12 um número de vezes prescrito. Neste exemplo, use cinco iterações totais. Outro filtro um pouco semelhante ao filtro de expansão gaussiano é o filtro exponencial de média móvel. Este tipo de filtro de média móvel ponderada é fácil de construir e não requer um grande tamanho de janela. Você ajusta um filtro de média móvel ponderada exponencialmente por um parâmetro alfa entre zero e um. Um maior valor de alfa terá menor alisamento. Amplie as leituras por um dia. Selecione o filtro médio de seu país (Filtro MA) Carregando. O filtro de média móvel é um filtro Low Pass FIR (Finite Impulse Response) simples comumente usado para suavizar uma série de datasigns amostrados. Demora M amostras de entrada por vez e leva a média dessas M-samples e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que é útil para cientistas e engenheiros para filtrar o componente ruidoso indesejado dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M), a suavidade da saída aumenta, enquanto que as transições afiadas nos dados são tornadas cada vez mais contundentes. Isso implica que este filtro possui uma excelente resposta ao domínio do tempo, mas uma resposta de freqüência fraca. O filtro MA executa três funções importantes: 1) Demora os pontos de entrada M, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos de computação envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro atua como um filtro de passagem baixa (com resposta de domínio de freqüência fraca e uma resposta de domínio de tempo bom). Código Matlab: O código matlab seguinte simula a resposta do domínio do tempo de um filtro M-point Moving Average e também faz a resposta de freqüência para vários comprimentos de filtro. Resposta de Domínio de Tempo: no primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é barulhenta e nosso objetivo é reduzir o ruído. A próxima figura é a resposta de saída de um filtro de média móvel de 3 pontos. Pode deduzir-se da figura que o filtro de 3 pontos de média móvel não fez muito na filtragem do ruído. Aumentamos os toques de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é retratado na próxima figura. Aumentamos as torneiras até 101 e 501 e podemos observar que mesmo - embora o ruído seja quase zero, as transições são apagadas drasticamente (observe a inclinação de cada lado do sinal e compare-os com a transição ideal da parede de tijolos em Nossa contribuição). Resposta de frequência: a partir da resposta de freqüência, pode-se afirmar que o roll-off é muito lento ea atenuação da faixa de parada não é boa. Dada esta atenuação da faixa de parada, claramente, o filtro de média móvel não pode separar uma faixa de freqüências de outra. Como sabemos que um bom desempenho no domínio do tempo resulta em desempenho fraco no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passagem baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: Livros recomendados: Resposta da freqüência da barra lateral primária da média de corrida Filtro A resposta de freqüência de um sistema LTI é o DTFT da resposta de impulso, A resposta de impulso de uma média móvel em L é Como o filtro médio móvel é FIR, a resposta de freqüência reduz-se à soma finita Podemos usar a identidade muito útil Para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados na magnitude desta função, a fim de determinar quais frequências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro desatualizado. Certas frequências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Nós podemos fazer muito melhor do que isso. O argumento acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)). (1-exp (-iomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright cópia 2000- - Universidade da Califórnia, Berkeley
Comments
Post a Comment