Mudança de média e convolução


A média móvel como um filtro A média móvel é freqüentemente usada para suavizar dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto na verdade é um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro, permitindo compará-lo com, por exemplo, filtros com janelas-sinc (veja os artigos sobre os filtros passa-baixa, passagem alta e banda passada e banda-rejeição para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Dos quais suavizar medições por meio da média é um excelente exemplo. Os filtros Windowed-sinc, por outro lado, são performantes no domínio da frequência. Com equalização no processamento de áudio como um exemplo típico. Existe uma comparação mais detalhada de ambos os tipos de filtros no Time Domain vs. Frequency Domain Performance of Filters. Se você tem dados para os quais tanto o tempo como o domínio de freqüência são importantes, então você pode querer dar uma olhada em Variações na Média Móvel. Que apresenta uma série de versões ponderadas da média móvel que são melhores nisso. A média móvel do comprimento (N) pode ser definida como escrita como normalmente é implementada, com a amostra de saída atual como a média das amostras anteriores (N). Visto como um filtro, a média móvel realiza uma convolução da sequência de entrada (xn) com um impulso retangular de comprimento (N) e altura (1N) (para tornar a área do pulso e, portanto, o ganho do filtro , 1 ). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel também possa ser calculada usando um número par de amostras, usando um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) As amostras são exatamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais, deslocando-a por um número inteiro de amostras. Domínio do tempo Uma vez que a média móvel é uma convolução com um pulso retangular, sua resposta de freqüência é uma função sinc. Isso torna algo parecido com o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. Essa é essa resposta de freqüência de voz que torna a média móvel um desempenho pobre no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito suavizar os dados para remover o ruído e, ao mesmo tempo, manter uma resposta de passo rápido (Figura 1). Para o típico Black Gaussian Noise (AWGN) que é frequentemente assumido, as amostras de média (N) têm o efeito de aumentar o SNR por um fator de (sqrt N). Uma vez que o ruído para as amostras individuais não está correlacionado, não há motivo para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, eliminará a quantidade máxima de ruído para uma nitidez de resposta de passo dada. Implementação Por ser um filtro FIR, a média móvel pode ser implementada através da convolução. Em seguida, terá a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado de forma recursiva, de uma maneira muito eficiente. Ele segue diretamente da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde percebemos que a mudança entre (yn1) e (yn) é que um termo extra (xn1N) aparece em O fim, enquanto o termo (xn-N1N) é removido desde o início. Em aplicações práticas, muitas vezes é possível excluir a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro local. Esta implementação recursiva será muito mais rápida do que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das adições (N) que seriam necessárias para uma implementação direta da definição. Uma coisa a procurar com uma implementação recursiva é que os erros de arredondamento se acumulam. Isso pode ou não ser um problema para a sua aplicação, mas também implica que esta implementação recursiva funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação em ponto flutuante geralmente é mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do filtro de média móvel simples em aplicações de processamento de sinal. Ferramenta de design de filtro Este artigo é complementado com uma ferramenta de design de filtro. Experimente valores diferentes para (N) e visualize os filtros resultantes. Experimente agora usando o MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e acrescentar a média móvel a essa matriz, estou tentando calcular a média móvel de 3 dias de baixo para o topo da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: tentei implementar o comando conv, mas recebo um erro. Aqui está o comando conv que eu tentei usar na 2ª coluna da matriz a: A saída que eu desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu apreciaria muito. Obrigado Para a coluna 2 da matriz a, eu estou informando a média móvel de 3 dias da seguinte forma e colocando o resultado na coluna 4 da matriz a (I renomeou a matriz a como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14 e 11 é de 14 a média de 3 dias de 14, 11, 8 é 11, a média de 3 dias de 11, 8, 5 é de 8 e a média de 3 dias de 8, 5, 2 é 5. Não há valor nas 2 linhas inferiores para a 4ª coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faça sentido ndash Aaron 12 de junho 13 às 1:28 Em geral, isso ajudaria se você mostrar o erro. Neste caso, você está fazendo duas coisas erradas: primeiro sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Em segundo lugar, observe o tamanho de c. Você não pode simplesmente se encaixar em c. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você deseja. Em vez disso, você é obrigado a usar um par de linhas: 29 de setembro de 2017 Mover média por convolução O que é média móvel e para o que é bom Como a média móvel é feita usando convolução A média móvel é uma operação simples usada geralmente para suprimir o ruído de um Sinal: estabelecemos o valor de cada ponto para a média dos valores em sua vizinhança. Por uma fórmula: Aqui x é a entrada e y é o sinal de saída, enquanto o tamanho da janela é w, supostamente estranho. A fórmula acima descreve uma operação simétrica: as amostras são retiradas de ambos os lados do ponto real. Abaixo está um exemplo da vida real. O ponto em que a janela é colocada é realmente vermelho. Valores fora de x devem ser zeros: para brincar e ver os efeitos da média móvel, dê uma olhada nesta demonstração interativa. Como fazê-lo por convolução Como você pode ter reconhecido, o cálculo da média móvel simples é semelhante à convolução: em ambos os casos, uma janela é deslizada ao longo do sinal e os elementos na janela são resumidos. Então, tente dar o mesmo ao usar a convolução. Use os seguintes parâmetros: A saída desejada é: Como primeira abordagem, vamos tentar o que obtem ao convolver o sinal x pelo seguinte k kernel: a saída é exatamente três vezes maior do que o esperado. Também pode ser visto que os valores de saída são o resumo dos três elementos na janela. É porque durante a convolução a janela é deslizada, todos os elementos nele são multiplicados por um e depois resumidos: yk 1 cdot x 1 cdot x 1 cdot x Para obter os valores desejados de y. A saída deve ser dividida por 3: por uma fórmula que inclua a divisão: Mas não seria o ideal para fazer a divisão durante a convolução. Aqui vem a idéia ao reorganizar a equação: então usaremos o seguinte k kernel: desta forma, vamos Obtenha o resultado desejado: Em geral: se queremos fazer uma média móvel por convolução com um tamanho de janela de w. Devemos usar o seguinte k kernel: uma função simples que faz a média móvel é: um exemplo de uso é:

Comments

Popular posts from this blog

Trading options using technical análise para design winning trades no Brasil

The bible of options strategies the definitivo guia para prática trading strategies by guy cohen

Online forex trading sinais livre no Brasil